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ABSTRACT. Statistical Machine Translation is the general term for the various 

data-driven methods that apply statistical models as the core mechanism to automatically 

translating from one language to another. Since the first practical approach was proposed 

in 1990, many attempts have been made to improve the state of the art. We review them 

here, make a clear clue of the achievements over the past twenty years, and point out a 

few promising directions. 
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1. Introduction. Statistical Machine Translation (SMT) is the general term for the various 

data-driven methods that apply statistical models as the core mechanism to automatically 

translating from one language to another. The idea of SMT can be traced back to 1949, 

when Warren Weaver attacked the problem of machine translation with the idea of 

cryptography from information theory: “When I look at an article in Russian, I say: „This is 

really written in English, but it has been coded in some strange symbols. I will now proceed 

to decode.‟”[1]Therefore, the process of machine translation is called “decoding” in SMT.  

The design of a statistical machine translation system involves modeling, training and 

decoding. Modeling is the problem of how to develop the stochastic process that simulates 

the behavior of translation, which results in a statistical model, i.e. one or more formulae 

for computing the probability or score of any candidate translation of a given text. Training 

is the problem of how to estimate the parameters in the statistical model, usually based on 

the statistics derived from a large amount of texts that consist of two or more languages. 

These texts are called corpus. If a corpus consists of both original texts and corresponding 

translations, it is called parallel corpus; otherwise, if it consists of similar texts in more than 

one language, it is called comparable corpus. Decoding is the problem of how to generate 

the best translation of a text given a statistical model and the estimated values of its 

parameters. “The best” usually means a maximum value in probability or score.  
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In theory, the translation unit that we concern can be word, phrase, sentences paragraph 

or even essay. But in practice, we usually perform full machine translation by sentence. As 

a tradition derived from the first practical system of SMT, which was designed to translate 

French sentences into English, the language of input (i.e. the source sentence) for 

translation is often referred to as French, while that of output (i.e. the target sentence) as 

English. In [2], the probability of a translation from French sentence F to English sentence 

E is computed via the Bayes‟ theorem:  
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In Equation (1), P(F|E) is called the translation probability and P(E) is called the 

language model probability. Since P(F) only depends on F, it is always a fixed number for 

the input sentence. So we just need to search for the best candidate translation with the 

greatest value given by 
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The process of searching for Ê  is called decoding, as it can be viewed as decrypting the 

sentence of strange symbols, F, into a sentence in familiar language, E.  

The translation model P(F|E) in Equation (1) are usually viewed as the instance of a 

general architecture called the source-channel model, in which “an English string is 

statistically generated (source), then statistically transformed into French (channel)”[3]. To 

establish the translation model, we need to give a random process that simulates the process 

of translation, in which many operations may be applied, such as insertion, deletion, 

replacement and reordering of linguistic units. Insertion can be viewed as generating words 

from a NULL word that we presume has already existed in the source sentence. In a similar 

way, deletion can be viewed as translating words into a NULL word in the target sentence. 

Replacement, or substitution, is the operation of replacing the words in the source sentence 

with the translation in the target sentence. Of course, translation is not always a monotone 

process, thus the operation of reordering is introduced. [3] shows that due to reordering, the 

decoding problem of even the simplest word-replacement translation model (e.g. IBM 

Model 1, see [4]) is NP-complete in computational complexity. To illustrate this, reductions 

were given from two famous NP-complete problems: Hamilton Circuit Problem and 

Minimum Set Cover Problem, respectively. Please Note that not all reordering processes in 

SMT result in NP-complete problem.  

Another popular paradigm is the log-linear model [5], in which the probability P(E|F) is 

approximately calculated from a collection of feature functions:  
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The feature function hm(E,F) is usually designed as the logarithm of probability, e.g. 

hm(.)=logp(.), though it can be designed in any form that renders a real number value. In 

fact, such feature functions exist in many statistical translation models. The log-linear 

model can be viewed as a generalization for the source-channel model, as we can get an 



 

 

 

 

 

3 

equivalent result by defining two feature functions:  

)|(log),(1 EFpFEh                                (4) 

and 

)(log),(2 EpFEh  ,                               (5) 

and set λ1=λ2=1. As the log-linear model is more flexible than the source-channel model, 

for example, we can add more than one translation model features or language model 

features, or both, it has been widely used as the framework to compute direct translation 

probability, while the latter is usually used to estimate the value of the translation feature 

functions. For the log-linear model, we can obtain the most probable sentence by 
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In what follows, section 2 introduces the statistical models that are widely used in SMT. 

Section 3 overviews the training methods that estimate the model parameters, for both 

translation models and λs. Section 4 looks into the problem of decoding. Section 5 

concludes this paper and lists some promising directions.  

 

2. Modeling. In general, one can design as many models as possible to attack different 

problems on simulating the process of translation. Amongst all those possible models, there 

are three major types that are widely used to model the behavior of translation: the 

translation models, the language models and the reordering models, and they are usually 

designed in the form of statistical models. In this paper we only focus on the translation and 

reordering models and view the reordering models as a part of statistical translation models, 

please refer to [6] if you are interested in the language models.  

2.1. Statistical translation models. The objective of designing a statistical translation 

model is to establish the relationship of correspondence between the concerned languages. 

In some early studies, a statistical translation model took into account anything of 

translation but the correctness of an output sentence, i.e. whether the word sequence is 

natural and grammatical in one language, which was usually left for the language model. In 

the simplest case where only the word-for-word translation is involved, one only needs to 

consider word selection. But in practice the problem becomes more complexity than that. In 

the past 20 years, we have witnessed a historical process from word-based models, 

phrase-based models to syntax-based models.  

2.1.1. Word-based translation models. As a pioneer work at the very beginning of SMT, 

five word-based statistical translation models were presented by IBM T.J. Watson Research 

Center, referred as IBM Models 1-5 [4], which can be divided into two kinds: 

alignment-based models (Models 1,2), in which the process of translation is viewed as first 

generating word positions in the target sentence that are related to those in the source, and 

then filling them by probable translation of each source word, and fertility-based models 

(Models 3-5), in which the process of translation is viewed as first reproducing each source 

word one or more times, then replacing each reproduced word with its probable translation, 

and last reordering the word sequence in proper order. They are also word alignment 

models, as they are able to give word-to-word correspondence of bilingual sentences. A 
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slightly modification on IBM Model 2 results in a homogeneous HMM-based alignment 

model[7-9], which generates much better experimental results than Model 2[10]. [10] also 

presented Model 6, a log-linear combination of HMM and Model 4.  

There are also many statistical models are applied to the task of word alignment, a 

set-apart application from machine translation (e.g. [11-14]). Since those models are not 

directly applied to SMT, we don‟t plan to discuss them in detail in this paper. Another issue 

that this paper doesn‟t discuss is word clustering[15], which is usually applied to avoid data 

sparseness problem when estimating probabilities.  

In that period, many efforts were paid on how to appropriately model the insertion, 

deletion and replacement of words in translation. Since it is difficult in establishing an 

enough sophisticated stochastic process that meets the actual translation behavior of human, 

as well as in estimating a precise value of the probabilities in those models, word-based 

models are prone to model errors. (I.e. the best translation doesn‟t have the highest 

probability according to the model.) Nowadays, the word-based models usually serve to 

generate word alignments for phrase or syntax-based models.  

2.1.2. Phrase-based translation models. Phrase-based translation models aims at encoding 

contextual features into statistical translation models. In higher rank IBM models, e.g. IBM 

Model 4 or 5, the cohesion of phrases is considered and modeled by a stochastic process of 

finding the dependence between the head word and each of the rest words in a phrase[4]. 

This leads to very complex models, especially when attempting to remove the deficiency 

(i.e. a stealing of probabilities), also with a difficulty in parameter estimating for 

probabilities. Aiming at a better model for phrasal cohesion, [16,17] presented a 

structure-based alignment model, which first aligns phrases with rough alignment and then 

aligns words within each phrase with detailed alignment. The alignment is IBM-style, i.e. 

many-to-one alignment. In a similar way that divide the translation process into phrase 

level alignment followed by word level alignment, [18,19] introduced an alignment 

template model. Alignment template is a matrix of local word links, which enables 

modeling many-to-many mapping of words. In those early studies, the phrase translation 

probability was computed from word-to-word probabilities, thus the translation itself was 

still a word-for-word translation. A different model that introduces phrase directly into 

SMT was presented in [20], in which the translation unit is non-linguistic phrase, not word. 

A log-linear framework version of this model is presented in [21]. With a set of rich 

features, the model showed better performance against IBM Model 4. That indicates that 

substituting word for phrase makes it convenient to model the process of translation, and 

gives fairly better results.  

The major problem in phrase-based models is how to extract phrases and how to give 

them scores (similar to probabilities, but may not be a value between 0 and 1). [20,22] 

found that the non-linguistic phrase, especially the phrase like “is a”, plays a very important 

role in improving the translation results, as it can serve as a “glue” of two linguistic phrases, 

such as “he is” and “a man”. During that period, there have mushroomed many 

phrase-based models and the effect brought by them continues. In this paper, we classify 

those models by whether they need word alignment. Similar to [22], many phrase-based 



 

 

 

 

 

5 

models need to extract bilingual phrase pairs from word alignments, which are usually a 

combination of IBM-style word alignments from two sides[23]. [25,26] selected potential 

translation pairs by expanding from alignment points, and [27] attempted to translate with a 

combination of several methods that handle phrase alignments and overlapping phrases. 

Since alignment errors may affect the precision of phrase extraction, [28] estimated phrase 

scores from word translation probabilities that cover multiple word alignments. Another 

trend is to encode more linguistic features into phrase-based models, for example, [29,30] 

extended word to an integration of several aspects of linguistic information, e.g. 

morphological, syntactic, or semantic information, thus resulted in a factored phrase-based 

model, where phrase is composed not only by words, but by more linguistic annotations 

along with words. Phrase-based models can also established on linguistic phrase, such as 

chunk[31]. Other models have no need of bootstrapping from word alignment, but 

extracting phrase pairs and estimating phrase scores directly from statistics of words. For 

example, [24] presented a joint probability model instead of conditional probability model, 

[32] applied pair-wise mutual information to estimate the center point for phrase extraction. 

Benefited from introducing syntactical information, both from constituency trees and 

dependency trees, syntax-directed phrase extraction methods also show competitive 

results[33,34].  

2.1.3. Syntax-based translation models. Syntax-based models can be traced back to as 

early as the phrase-based ones. [35,36] applied the motivation of producing the translation 

by deciding whether to exchange two components or not, referred to as Inversion 

Transduction Grammar (ITG), or a simplified version, Bracketing Transduction Grammar 

(BTG)[37]. [38,39] presented a syntax-based model of modeling the translation process 

from the source parse tree to the target sentence. [40] improved this model by allowing 

loose clone of sub-trees. In those models, the translation unit was still word, not phrase or 

sub-tree, so the syntax played a role no more than a reordering or re-ranking feature. 

Though many efforts were made to incorporate syntax features, it seemed that the syntax 

did not contribute to the overall improvement much[41,42], especially compared with 

phrase-based models. However, situation changed when the sub-tree structure was taken 

into account as a whole rather than the single word.  

For syntax-based models, there is a distinction between formally syntax-based and 

linguistically syntax-based models. Formally but non-linguistically syntax-based models 

are those which introduce a synchronous context-free grammar but do not induce grammars 

of linguistic annotations. Besides the above-mentioned ITG and BTG models, such models 

also include the hierarchical phrase-based model[43-46], etc. Formally and linguistically 

syntax-based models usually rely on a parse tree or packed parse trees and can be 

distinguished by on which side the parse tree is introduced. [47-49] incorporated syntactic 

trees on the target side, while [50,51] incorporated them on the source side. [52,53] viewed 

translation of both source and target parse trees as a general framework of parsing. The 

major problem of such translation lies in that many syntactic structures between two 

different languages are naturally non-isomorphic. To attack this problem, Synchronous 

Tree Adjoining Grammar (STAG) [54-56] and Synchronous Tree Substitution Grammar 
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(STSG) [57-59] were introduced to syntax-based SMT. To avoid parsing errors brought by 

1-best parse tree, [60-62] accepted a collection of possible parse trees as the input.  

Except for parse trees, many models were proposed to base themselves on dependency 

trees[57,63-65]. [66] indicated that it may be more robust to phrase cohesion by using 

dependency trees. [67] combined the merits of both constituency and dependency trees.  

Transducers, which was first introduced to word-for-word translation[68] and viewed as 

an alternative to grammars, has recently arisen as another approach of knowledge 

representation for modeling transformation on trees[56,69-71].  

2.2. Reordering models. At the early time of SMT, reordering (or distortion) served as an 

operation embedded in the stochastic process that simulates the behavior of 

translation[4,17,36,37]. [72] showed that the ITG constrains achieve higher flexibility than 

the IBM model constrains. With the emergence of log-linear models and development of 

phrase-based SMT, the reordering probability has come to be computed separately from 

translation model probability. At the beginning, phrase-based SMT adopted relatively 

simple reordering models that pose limitation on arbitrary long jump[22]. [73] considered 

the distortions brought by different alignment patterns. Then the reordering pattern of 

adjacent blocks (i.e. phrase pairs) were considered[74-76], followed by solutions to 

disadjacent blocks[77]. A further step from those flat reordering models is to incorporate 

hierarchical reordering into phrase-based SMT, which can be based on BTG[78-81], 

constituency trees[82] or dependency trees[83].  

 

3. Training. Training is a process to estimate parameters of a statistical model through 

statistics from a corpus. Usually, most of parameters of a statistical translation model are 

probabilities. There are three widely applied strategies of training: for models that have no 

hidden variables, the maximum likelihood estimation (MLE) is usually performed, for 

models that have hidden variables, the expectation-maximization (EM) algorithm is usually 

applied, and for getting adequate weights of a log-linear model, we usually perform 

discriminative training.  

In word-based statistical translation models, and some other models of word-for-word 

translation, the word alignment is usually not given in the corpus, and thus becomes a 

hidden variable. To estimate probabilities under such a case, the EM algorithm[84] was 

introduced. [4] induced the parameter reestimation formulae for IBM Model 1-5, among 

which the formulae for Model 1, 2 are not deficient, while those for Model 3-5 are, for the 

counts are only summed over a collection of probable alignments according to Model 2. [4] 

showed that Model 1 has a unique local maximum and concaves to it. For transferring from 

the lower-rank model to the higher-rank model, viterbi training is usually applied[4,10]. 

Similar EM-based training algorithms were proposed for many translation models of 

word-for-word translation, with different reestimation formulae[7,17-19,37]. The early 

studies adopted perplexity to show the effect of training[4,7]. For the task of word 

alignment, precision, recall and Alignment Error Rate (AER) were also used[10]. [68,85] 

proposed algorithms of training a collection of finite-state transducers instead of computing 

probabilities.  
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For phrase or syntax-based statistical translation models that extract translation 

equivalences from word alignments, the solution becomes simple because no hidden 

variables are involved, thus the parameter estimation is usually implemented via maximum 

likelihood estimation, in which the phrase translation probability distribution is estimated 

by relative frequency[20-22,29-31,47-50]. Strictly speaking, some models do introduce 

hidden variables, but they fall into the algebraic models, and the EM training differs 

slightly from MLE by how to collect counts. And various training methods are presented to 

improve the translation performance[19,24,86]. Recently, tree kernels have been applied to 

explore structured features of parse trees[87,88].  

For log-linear models, after estimating the probabilities in the feature functions, an extra 

training should be performed for estimating weights (i.e. λs), also called tuning. The tuning 

is usually a discriminative training performed on a held-out set the format of which is 

similar to the test set, called the development set, or dev-set for short. At first, 

discriminative training was conducted to maximize the direct translation probability, using 

Generalized Iterative Scaling (GIS)[89] to deal with real-valued feature functions[5]. Soon, 

Minimum Error Rate Training (MERT) was proposed to directly optimize translation 

quality by defining a loss function with respect to the automatic evaluation metric[90]. 

Therefore, maximizing the probability yields to minimizing the evaluation errors. [91] 

proposed a perceptron-style discriminative algorithm which acts in a similar way of static 

re-ranking systems, but needs no baseline system. [92] proposed a generalized algorithm 

which does not use feature functions, n-best list of outputs and dev-set. [93] proposed a 

semi-supervised approach that combines EM with discriminative training (i.e. EMD) for 

word alignment task. [94,95] applied log-linear model to refine phrase pair extraction and 

scoring. [96] argued that log-linear models are not expressive enough to handle few 

features. They presented BoostedMERT to learn more complex re-rankers than the standard 

MERT. [97] extended phrase-based MERT to deal with SCFG models.  

To summarize, many efforts have been made to refine the basic three training strategies 

to explore effective usage of more linguistic knowledge and avoid overfitting to data. At 

the same time, more and more machine learning approaches have been introduced and a 

new trend that tends to combine temporary outputs of decoding directly into training has 

arisen.  

 

4. Decoding. In SMT, decoding is the process of machine translation, i.e. the process that 

rewrites the encrypted messages in normal language. The objective of a decoding is to 

generate the most probable translation for a given sentence, usually by scoring among 

candidates. As decoding is often an NP-hard problem by itself, approximate algorithms are 

usually adopted so as to implement decoding in polynomial time. As a result, the decoding 

algorithm (decoder) may give a suboptimal result, which is called a search error, opposite 

to the model error (I.e. the translation that has the highest score according to the statistical 

translation model is not the best one). In other words, a search error occurs when the 

decoder renders a translation Ê  for a given input sentence F but there exists a sentence 

E  that satisfies 
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During decoding, the candidate translation unit is first selected from the knowledge base 

and combined with each other, forming a temporary string or structure, which is called the 

partial hypothesis (or translation options) because not all parts of the input sentence are 

translated. Then the relevant scores are computed and all possible partial hypotheses are 

re-ranked. That process continues until every part of the input sentence is processed, the 

corresponding result is called the complete hypothesis.  

The first statistical machine translation system, which was based on IBM models and 

outperformed a popular rule-based system, is Candide[98]. Candide adopted an 

analysis-transfer-synthesis paradigm, in which a stack-based decoding algorithm was 

presented[99]. In decoding, the hypotheses are generated by selecting word for each 

position from the beginning to the end of output sentence. In fact, the hypotheses are not 

stored in one stack. Multiple stacks are used to store hypotheses of different word length, so 

as to avoid longer hypothesis from being pruned off due to more production of probabilities. 

The search problem of IBM Models can be defined as finding both optimal translation Ê  

and most probable alignment Â  for a given input sentence F:  

)()|,(maxargˆ,ˆ
,
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Many efforts were made for more efficient decoding for IBM models: beam search and 

dynamic programming (DP) algorithm was proposed for monotone decoding[100,101] and 

later for limited word reordering[102,103]; multi-pass A* search was proposed with 

admissible heuristic function and empirical heuristic function[104]; greedy or perturbation 

search was also suggested to do much faster decoding[17,105-107]; similar iterative 

approaches were proposed that employ dynamic programming to generate final hypothesis 

by improving an initial hypothesis[108,109]. [105,106] took Integer Programming (IP) as 

an optimal search algorithm for Model 4 and compared it with the stack and greedy 

decoding algorithms. It was observed that the stack decoder is not much inferior to the IP 

decoder, and search errors only cover a small portion of the total errors. They also found 

search errors do not have a significant effect on the measures of translation quality, i.e. 

BLEU scores. [110] proposed another optimal decoder using Cutting-Plane Integer Linear 

Programming (ILP), which is an exact solution and more practical than traditional IP.  

Beam search and stack-based decoding algorithms are widely applied to phrase-based 

and informally syntax-based models[18-22,29-31,50,60], which can be classified into the 

framework of weighted finite-state transducers (FSTs). Formally syntax-based models 

usually apply CKY-style algorithms to decoding[39,52-59,61-63,77,78,111], as well as tree 

transducers[69-71]. [52] illustrated the relationship between parsing, synchronization and 

translation: suppose D is the dimensionality of grammar and I is the dimensionality of input, 

a generalized parser that can parse in a cross-language manner becomes a synchronous 

parser if D=I (esp. an ordinary parser if D=I=1), a translator if D≥I, and a synchronizer if 

D≤I. Similar to training, discriminative approaches have also been introduced into decoding 

recently. To do that, consensus statistics are used to rank and combine the decoding outputs. 
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The Minimum Bayes Risk (MBR) decoding was presented as a sentence-level 

consensus-based decoding which tries to rank the partial hypotheses by loss function rather 

than probability[112,113]. Various phrase or word-level decoding approaches were 

proposed, such as consensus voting[114,115] and word-based system 

combination[116,117]. System combination, or multi-engine machine translation, is a 

strategy that combines translation outputs from several machine translation systems to 

generate better results. Rather than re-ranking the complete hypotheses of the candidate 

systems, focus has recently been posed on the capacity of generating final results from an 

ensemble of candidate partial hypotheses[118-120], as well as incorporating a large scale of 

linguistic features or rules directly into the process of decoding[121,122]. Partly because of 

that, [122,123] proposed a way towards extensible and general-purpose decoders.  

To speed up decoding of phrase and syntax-based models, two ways have been followed 

in recent years. One is to employ better techniques to refine the inherent properties of the 

existing algorithms, such as different directional generation[124,125], different extension of 

hypothesis[126], different hill-climbing algorithm[127], effective pruning[128], Monte 

Carlo simulation[129], etc. Another is to pose linguistic constraints, such as cohesive 

phrases[130,131], constituent boundaries[132], translation boundaries[133] and the 

selective use of syntactic constraints[134], on beam search.  

The problem of decoding is how to find the optimal result within a limited time and 

search space. To tackle this problem, many efforts have been made by introducing 

sophisticated heuristics or ruling out redundant hypotheses with well-designed constraints.  
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FIGURE 1. The machine translation pyramid. 

 

5. Conclusions. As a paradigm of machine translation, SMT is going upwards the machine 

translation pyramid, where direct, syntax-based, semantic and interlingua-based translation 

approaches come in turn from bottom to top (Figure 1). Now semantic-based approaches 

have come under consideration[135,136].  

More generally, researchers have held a belief for decades that linguistic information can 

help in improving the quality of machine translation. The open question of SMT is not 
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whether to introduce linguistic features, but how to introduce them. As can be seen from 

the zigzag course of incorporating syntax features into SMT, as well as the use of word 

sense disambiguation (WSD)[137,138], the unsatisfying results got at the beginning time 

are not due to the ineffectiveness of introduced features, but due to misuse of them. We also 

appeal that in order to explore substantial power of linguistic knowledge, theoretical 

research is of the same importance as empirical methods.  
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